
Post-literate Programming: Linking Discussion and Code in
Software Development Teams

Soya Park, Amy X. Zhang, David R. Karger
MIT CSAIL

Cambridge, MA 02139, USA
[soya, axz, karger]@mit.edu

ABSTRACT
The literate programming paradigm presents a program in-
terleaved with natural language text explaining the code’s
rationale and logic. While this is great for program readers,
the labor of creating literate programs deters most program au-
thors from providing this text at authoring time. Instead, as we
determine through interviews, developers provide their design
rationales after the fact, in discussions with collaborators. We
propose to capture these discussions and incorporate them into
the code. We have prototyped a tool to link online discussion
of code directly to the code it discusses. Incorporating these
discussions incrementally creates post-literate programs that
convey information to future developers.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
software development; group chat; knowledge management

INTRODUCTION
Managing knowledge and its spread within software develop-
ment teams is challenging [16]. To streamline the knowledge
sharing process, software teams rely on a suite of different
tools, including multiple discussion channels such as email,
online forums, community Q&A sites, and group chat, as well
as project management tools and online code repositories. The
multiplicity of tools can make it hard for developers to find the
information they need or from which they could potentially
benefit [10, 8]. Previous work suggests that documentation
generation [12, 5, 2] and automatic commenting [11, 17] could
be a way to share the design and structure of software imple-
mentations. Better tools for searching or inquiry within a code
base [15, 14, 7, 13, 6, 1] have also been proposed to help
developers locate or understand a piece of code. For instance,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’18 Adjunct October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5949-8/18/10. . . $15.00

DOI: https://doi.org/10.1145/3266037.3266098

@Clerkbot
https://github.repo#L10
“To engine facilitate..”

Added the
conversation to
the code repository!

Comments added near relevant
source codes for future reference

Why did you implement
the code this way?

Figure 1. Workflow of Clerkbot: (a) developers converse about a section
of code in chat, (b) a user alerts Clerkbot and specifies where the code
exists as well as optionally provides a summary of the discussion, (c)
the discussion summary and a link to the full discussion is added to the
relevant source code as comments.

Codeon [3] introduces asynchronous assistance from remote
developers to answer particular questions from developers.

Such discussions generally take place on communication plat-
forms separated from the code, which makes it hard to find
them later (or even know they exist). In this work, we focus
on preserving the information that is exchanged within online
discussion platforms of software teams, and making it more
easily accessible from code in order to provide context for
programming. We call this incorporation of discussion about
code within the code itself post-literate programming. In con-
trast to literate programming [9], where developers write their
explanations about code while implementing the code itself,
post-literate programming generates contextual information
after the code has been written, by making use of discussions
about the code.

We began by investigating how developers currently answer
the question “Why did my colleague implement the code like
this?”. We interviewed software developers from various sizes
of teams and found that developers often spend time going
from code to then searching through external resources. We
also found that developers’ most preferred way to answer the
question is to use the revision history1 in their version control
system and then sometimes ask the author of the revision for
details or pointers.

1https://git-scm.com/docs/git-blame

https://doi.org/10.1145/3266037.3266098

From this finding, we built a discussion tool called ClerkBot
that instantiates some of the ideas behind post-literate pro-
gramming. ClerkBot is a connector between the discussion
platform Slack and a code repository. Users can mention
ClerkBot while chatting about code within Slack and the tool
then contributes a commented line within the source code con-
taining a link back to the discussion. The next time a developer
is inspecting that piece of code or looking through the revision
history, they can be directed to the discussion about the code
for additional context. Future iterations of ClerkBot could
link even more discussion platforms to further enrich the code
representation.

NEEDFINDING INTERVIEWS
To investigate how developers access the deliberation history
of code development, we conducted semi-structured inter-
views. We recruited 7 developers (2 females, 5 males, mean
age=25.1). Interviewees were recruited through mailing lists
and word-of-mouth. Four of the interviewees are working on
research projects or course assignment, and the rest are work-
ing on commercial products. We had a one-on-one in-person
interview for 1 hour for each participant. The participants
were each compensated $20 for their time.

In each interview, we asked about team dynamics and the in-
teraction between team members such as their communication
tools and team meeting schedule. We also asked them to bring
to the interview one or two discussions within their team and
annotate what content interviewees found useful and how they
revisited that content. The following summarizes comments
from the interviews.

Developers share knowledge through discussion and often
go back to old discussions: If developers know whom to
ask questions, they ping their colleague; otherwise, they post
in the group discussion. Interviewees said they often don’t
read discussions in real-time but instead mark them to revisit
later by starring or forwarding to themselves. One person
said: “I set aside time to comprehend the team discussion. I
normally star the discussion and get back to it later unless I’m
mentioned in the discussion.”

Developers often inspect the source code by tracking re-
vision history to understand the implementation: Since
software development teams rely on multiple channels of in-
formation, developers are often overwhelmed when trying to
find information about code. However, interviewees said track-
ing the revision history often guides them in the right direction
to begin searching.

CLERKBOT: LINKING DISCUSSION AND CODE
Clerkbot is a chatbot tool that developers in a team can use to
mark conversations that are then linked to their code repository.
Following are design considerations for Clerkbot.

Link implementation and discussion closer: Software
teams use many different tools in order to organize differ-
ent types of tasks into different workspaces. However, this
dispersion leads to information in different tools being discon-
nected. From our interviews, we saw that developers don’t
update comments because editing comments requires many

tedious steps (e.g. commit, pull request), even though informa-
tion gleaned from discussions can be helpful for understanding
the code base.

Scale and Scope of Comments: An open design question
is how much of a given discussion should be incorporated
in code comments. Providing only a link to the discussion
minimizes code clutter but also requires the reader to navigate
elsewhere to learn about it. At the other extreme, incorporating
the entire discussion provides full information but may over-
clutter the code. As a middle ground, we could incorporate
only a summary, with a link to the full discussion. As one
interviewee said, “I don’t want to see the entire thread.. I
only want a short summary of a final design decision and
maybe second and third alternatives.” Thus, Clerkbot can add
a summary of the discussion to the commented line, along
with the link to the full discussion. However, summarizing
discussions require extra effort from developers. As a future
work, we will design an emergent summarization tool to ease
the summarization task [18].

The scope of a discussion can also range widely from one
line of source code to functions to general design decisions of
software. Clerkbot should locate any discussion at a suitable
scope and location of the source code, so that future developers
can find the discussion at the expected place.

Avoiding Comment Clutter: To avoid cluttering the code
base with too many comments attached by Clerkbot, Clerk-
bot can show nearby comments already inserted by Clerkbot
and suggest to users to combine their comment with another
comment. In this way, users can manage to avoid redundant
content and not clutter the code with different comments.

FUTURE WORK
Clerkbot suggests a method of preserving valuable knowl-
edge scattered in various communication channels. However,
this work raises additional future work to enhance knowledge
sharing experiences within code:

IDE plug-in: To address concerns about cluttering code with
too much discussion, an IDE plug-in that can present discus-
sions beside the code would reduce clutter in the code—a form
of code annotation. Such an IDE would allow users to view
full discussions without leaving their IDE.

Presentations of large-scale knowledge sharing: The cur-
rent implementation of Clerkbot only allows a linear view of
raw discussions. However, the linear view is hard for naviga-
tion or comprehension if the amount of information piles up
over time. As future work, we will investigate better presenta-
tions of knowledge sharing at scale, including hierarchical or
alternate representations [19, 20].

Social factors to recommend relevant knowledge: These
tools could also encapsulate social dynamics [4] in discus-
sion tools of software development teams to automatically
detect the relevance of information for each developer and
recommend if the information is of interest (e.g. working on
a similar issue, an important issue to the team, interesting to
colleagues) to the developer.

REFERENCES
1. Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng

Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes. 2006.
Sourcerer: a search engine for open source code
supporting structure-based search. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications.
ACM, 681–682.

2. Denise Che. 2014. Automatic documentation generation
from source code. Ph.D. Dissertation. Massachusetts
Institute of Technology, Cambridge, MA.

3. Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S. Lasecki, and Steve Oney. 2017. Codeon:
On-demand software development assistance. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. ACM, 6220–6231.

4. L. Dabbish, C. Stuart, J. Tsay, and J Herbsleb. 2012.
Social coding in GitHub: transparency and collaboration
in an open software repository. In Proceedings of the
ACM 2012 conference on computer supported
cooperative work. ACM, 1277–1286.

5. Uri Dekel and James D. Herbsleb. 2009. Improving API
documentation usability with knowledge pushing. In
Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 320–330.

6. Brian Eddy. 2014. Structured source retrieval for
improving software search during program
comprehension tasks. In Proceedings of the companion
publication of the 2014 ACM SIGPLAN conference on
Systems, Programming, and Applications: Software for
Humanity. ACM, 13–15.

7. Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2009.
Automatically capturing source code context of
nl-queries for software maintenance and reuse. In
Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 232–242.

8. Peter Loffler Jarczyk, Alex PJ and Frank M. Shipmann.
1992. Design rationale for software engineering: a survey.
In Proceedings of the Twenty-Fifth Hawaii International
Conference. IEEE, 577–586.

9. Donald Ervin Knuth. 1984. Literate programming.
Comput. J. 17, 2 (1984), 97–111.

10. Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007.
Information Needs in Collocated Software Development
Teams. In Proceedings of the 29th international
conference on Software Engineering. IEEE Computer
Society, 344–353.

11. Mario Linares-VÃąsquez, Luis Fernando CortÃl’s-Coy,
Jairo Aponte, and Denys Poshyvanyk. 2015.
Changescribe: A tool for automatically generating
commit messages. In Proceedings of the 37th
International Conference on Software Engineering. IEEE
Press, 709–712.

12. Paul W. McBurney and Collin McMillan. 2014.
Automatic documentation generation via source code
summarization of method context. In Proceedings of the
22nd International Conference on Program
Comprehension. ACM, 279–290.

13. Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and
Xiaochen Li. 2016. Query Expansion Based on Crowd
Knowledge for Code Search. IEEE Trans. Services
Computing 9, 5 (2016), 771–783.

14. Santanu Paul and Atul Prakash. 1994. A framework for
source code search using program patterns. IEEE
Transactions on Software Engineering 20, 6 (1994),
463–475.

15. Steven P Reiss. 2009. Semantics-based code search. In
Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 243–253.

16. Ioana Rus, Mikael Lindvall, and S. Sinha. 2002.
Knowledge management in software engineering. IEEE
software 19, 3 (2002), 26–38.

17. Emily Hill Divya Muppaneni Lori Pollock Sridhara,
Giriprasad and K. Vijay-Shanker. 2014. Towards
automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international
conference on Automated software engineering. ACM,
43–52.

18. Amy X. Zhang and Justin Cranshaw. 2018. Making sense
of group chat through collaborative tagging and
summarization. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work and Social
Computing (CSCW). ACM.

19. Amy X. Zhang, Lea Verou, and David Karger. 2017.
Wikum: Bridging discussion forums and wikis using
recursive summarization. In Proceedings of the ACM
2012 conference on computer supported cooperative
work. ACM, 2082–2096.

20. Joyce Zhu, Jeremy Warner, Mitchell Gordon, Jeffery
White, Renan Zanelatto, and Philip J. Guo. 2015. Toward
a Domain-Specific Visual Discussion Forum for Learning
Computer Programming: An Empirical Study of a
Popular MOOC Forum. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC)
(2015), 101–109.

	Introduction
	Needfinding Interviews
	Clerkbot: Linking Discussion and Code
	Future Work
	References

